ACKNOWLEDGMENTS

I would like to thank GOD for helping me in finishing this work. GOD you have made my life more bountiful. May your name be exalted, honored, and glorified.

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Sameer Ikhdair for being a great advisor and an excellent doctor. His continuous encouragement, support, and invaluable suggestions helped to make this work successful.

My sincere thanks go to Prof. Dr. Fahreddin Sadikoglu, Prof. Dr. Şenol Bektaş, Assoc. Prof. Dr. Kadri Bürüncük and Assist. Prof. Dr. Ali Serener for their support and attending there classes during undergraduate and graduate studies.

A special thanks goes to Assoc. Prof. Dr. Adnan Khashman (Vice Dean - Faculty of Engineering, Chairman of Electrical & Electronic Engineering Faculty), and Assist. Prof. Dr. Özgür C. Özerdem (Vice Chairman - Electrical and Electronic Engineering) for their great support during my undergraduate and graduate studies.

My deepest gratitude goes to my family for their unflagging love and support throughout my life; this dissertation is simply impossible without them. I am indebted to my father, for his care and love. I cannot ask for more from my mother, as she is simply perfect. I have no suitable word that can fully describe her everlasting love to me, I am also very grateful to my brother and sisters.

I am deeply and forever indebted to my wife (Ayşe KHADER) for her love, support and encouragement throughout my new life. Special thanks goes to my fatherin- law, mother- in- law, my wife's sister and brother for their support and taking care of me. I am very happy and proud of having wonderful friends in North Cyprus Especially. They have always supported me during my 7 years of studies. I will always cherish the wonderful time spent together with them.

Finally, I would like to thank the employers in the company that I am working within 3 years (ELPARTS ENTERPRISES & ALTYAPI ELEKTRIK) for their love and support during my studies and getting experience in work.

ABSTRACT

A dipole antenna is an antenna with a center-fed driven element for transmitting or receiving radio frequency energy. These antennas are the simplest practical antennas from a theoretical point of view. Dipole antennas are commonly used for broadcasting, cellular phones, and wireless communications due to their omnidirective property.

Antenna design is interactive. So, changing one dimension in each formula result in the need to change other dimensions or parameters which will take much time and calculations, Instead of formulas, the antenna design programs use interactive algorithms that automatically make all the other changes simple and easy.

This thesis attempts to construct and analyze different types of dipole antennas such as half wave dipole antenna and rabbit ears (V) antenna. These examples illustrate both the simplicity and power of the software such as PCAAD, MMANA, EZNEC and MATLAB, through the construction and simulation of these antenna structures.

As a practical application to dipole antennas, Yagi-Uda antenna is considered as one of the most important type of dipole antennas where, different number of elements are constructed and simulated to analyze its characteristics.

An implementation of Yagi-Uda antenna is designed and simulated in accordance with the broadcasting channels of Bayrak Radyo ve Televizyon Kurumu (BRTK) in Turkish Republic of Northern Cyprus (TRNC).

TABLE OF CONTENTS

ACKNOWLEDGMENTS	Ι
ABSTRACT	II
TABLE OF CONTENTS	III
LIST OF FIGURES	VI
LIST OF TABLES	VIII
INTRODUCTION	1
1. ANTENNA PARAMETERS	4
1.1 Overview	4
1.2 Electromagnetic Radiation	4
1.3 Antenna Radiation	6
1.4 Near and Far Field Regions	8
1.5 Antenna Parameters	9
1.5.1 Radiation Pattern	9
1.5.2 Polarization	11
1.6 Directivity	12
1.7Antenna Efficiency	13
1.8 Antenna Gain	13
1.9 Front-to-Back Ratio	14
1.10 Input Impedance	15
1.11 Summary	15
2. THE THEORY OF DIPOLE ANTENNAS AND YAGI-	16
UDA ANTENNA	
2.1 Overview	16
2.2 Thin Linear Dipole Antenna	16
2.2.1 Pattern Function of a Wave Dipole	18
2.2.1.1 Half-Wave Dipole Antenna ($\lambda/2$)	19
2.2.1.2 Full-Wave Dipole Antenna (λ)	20
2.2.1.3 Wave of Dipole Antenna $(3\lambda/2)$	20
2.2.2 Radiation Resistance of a Half-Wave Dipole	20
2.2.3 Directivity of a Half-Wave Dipole Antenna	21

2.3 Dipole Characteristics	21
2.3.1 Frequency versus Length	21
2.3.2 Radiation Patterns	22
2.3.3 Feeder Line	23
2.4 Types of Dipole Antennas	24
2.5 YAGI- UDA Antenna	26
2.6 Summary	31
3. MODELING METHODS AND SOFTWARE FOR	32

ANTENNAS

3.1 Overview	32
3.2 Methods of Electromagnetic Simulators	32
3.2.1 Method of Moment (MoM)	33
3.2.2 Finite-Difference Time Domain (FDTD)	35
3.2.3 Finite Element Method (FEM)	35
3.3 Simulation Software	36
3.3.1 Personal Computer Aided Antenna Design (PCAAD 5.0)	36
3.3.2 Numerical Electromagnetic Computation (NEC)	37
3.3.2.1 NEC-2	37
3.3.2.2 EZNEC for Windows	38
3.3.3 Makoto Mori Antenna Analysis (MMANA)	38
3.4 Summary	40
4. SOME APPLICATIONS TO LINEAR DIPOLE	41

ANTENNA

4.1 Overview	41
4.2 Introduction	41
4.3 Dipole Antenna Simulation	41
4.3.1 Matlab Simulation	41
4.3.2 MMANA Simulations for Half Wave Dipole Antenna	43
4.3.3 PCAAD Simulations for Half Wave Dipole Antenna	48
4.3.4 EZNEC and 4NEC2 Simulations for Half Wave Dipole Antenna	50

4.4 PCAAD Simulations to Rabbit Ears (V) Antenna	
4.5 Simulations of Yagi Uda Antenna	58
4.5.1 PCAAD Simulations of Yagi-Uda Antenna	58
4.5.2 EZNEC and 4NEC2 Simulations of Yagi-Uda Antenna	64
4.5.3 MMANA Simulations of Yagi-Uda Antenna	66
4.6 Analysis of Yagi-Uda Antenna	69
4.6.1 Theoretical Analysis	69
4.6.2 Analysis of Yagi-Uda Antenna by Using Software	70
4.7 Implementation of Yagi-Uda Antenna	71
4.8 Summary	76
CONCLUSION	77
REFERENCES	80
APPENDIX A Maxwell's Equations	83
APPENDIX B Matlab Program to Simulate Eq.(2.8)	84
APPENDIX C Channels and Frequencies	85

LIST OF FIGURES

Figure 1.1	Electromagnetic Spectrum	5
Figure 1.2	Radio Wave	6
Figure 1.3	Radiation From an Antenna	7
Figure 1.4	Field Regions Around an Antenna	8
Figure 1.5	Radiation Pattern of a Directional Antenna	10
Figure 1.6	Linearly (Vertically) Polarized Wave	11
Figure 1.7	Commonly Used Polarization Schemes	12
Figure 2.1	A Center-Fed Linear Dipole with Sinusoidal Current	17
	Distribution	
Figure 2.2	E -Plane Radiation Patterns for Center-Fed Dipole Antennas	19
Figure 2.3	Radiation Patterns in Dipole Antenna in Free Space	22
Figure 2.4	Various Dipole Antennas	25
Figure 2.5	Rabbit Ears (V) Antenna	26
Figure 2.6	Geometry of Yagi-Uda Array	27
Figure 2.7	Radiation Pattern of Yagi Uda Antenna	28
Figure 2.8	Geometry of Yagi-Uda Array with the Boom Part	29
Figure 2.9	Gain Versus Number of Elements	31
Figure 3.1	MoM Typical Basis Functions	34
Figure 3.2	Screen Shot from PCAAD 5	37
Figure 3.3	Screen Shot from MMANA	38
Figure 3.4	EM simulators for Radiation Pattern with Half Wave Dipole	40
	Antenna	
Figure 4.1	${\it E}$ -plane Radiation Patterns for Center-Fed Dipole Antennas for	42
	Different Lengths	
Figure 4.2	Vertical polarization and Current Obtained for $l = 0.1$ m	44
Figure 4.3	Vertical Polarization and Current Obtained for $l = 0.6$ m	45
Figure 4.4	Vertical Polarization and Current Obtained for $l = 1.5$ m	45
Figure 4.5	Current in Dipoles Versus Length	45
Figure 4.6	Gain Versus Dipole Length	46
Figure 4.7	Resistance Versus Dipole Length	47

Figure 4.8	Reactance Versus Dipole Length	47
Figure 4.9	Simulation of a Half Wave Dipole Antenna Presenting	48
	Numerical Results	
Figure 4.10	Radiation Pattern in Three Dimension for Gain	49
Figure 4.11	The <i>E</i> - Plane Radiation Pattern of Half Wave Dipole Antenna	50
Figure 4.12	Structure of the Half Wave Dipole Antenna	51
Figure 4.13	A Plot for the Simulated Structure by EZNEC and 4NEC2	52
Figure 4.14	The Radiation Pattern of Rabbit Ears with $l = 30$ cm	54
	and $\theta = 170^{\circ}$	
Figure 4.15	The Radiation Pattern of Rabbit Ears with $l = 30$ cm	55
	and $\theta = 30^{\circ}$	
Figure 4.16	Simulations of Yagi-Uda Antenna with Elements $N = 3$	58
Figure 4.17	Simulation of Yagi-Uda Antenna with Elements $N = 5$	59
Figure 4.18	The Polar Radiation Pattern Plots in 3D of the Yagi-Uda	61
	Antenna in 3D with Various Elements $N = 3, 4, 5, 6, 7$	
Figure 4.19	Radiation Pattern for Yagi-Uda Antennas with Elements $N = 5$	63
	and Different Spaces between Dipoles.	
Figure 4.20	Results for Gain, Impedance, Structure and Radiation Pattern,	65
	Respectively, Obtained for $N = 3$ Elements of Yagi-Uda	
	Antenna	
Figure 4.21	Simulated Results for Vertical Polarization, Horizontal	67
	Polarization, Current Distribution and 3D of Radiation Pattern	
	Obtained for $N = 3$ Elements Using Yagi-Uda Antenna	
Figure 4.22	Simulated Results for Vertical Polarization, Horizontal	68
	Polarization, Current Distribution and 3D of Radiation Pattern	
	Obtained for $N = 7$ Elements Using Yagi-Uda Antenna	
Figure 4.23	Simulated Results for Vertical Polarization, Horizontal	
	Polarization, Current Distribution and 3D of Radiation Pattern	

Obtained for N = 5 Elements for Yagi-Uda Antenna Designed 75

VII

LIST OF TABLES

Table 1.1	Electromagnetic Spectrum and Some Applications	5
Table 2.1	Gain of the Dipole Antennas	23
Table 2.2	Characteristics of Equally Spaced Yagi-Uda Antennas	30
Table 3.1	Main Features of the Most Commonly Used by EM	36
	Simulation Techniques	
Table 3.2	An Overview of Some Electromagnetic Simulators	39
Table 4.1	Different Lengths of Dipole Antenna	42
Table 4.2	Gain, Resistance, and Reactance as a Function of Dipole	44
	Length in Free Space	
Table 4.3	Simulating Results the Half Wave Dipole Antenna by	50
	PCAAD	
Table 4.4	The Obtained Results in Simulating the Half Wave Dipole	52
	Antenna by EZNEC and 4NEC2.	
Table 4.5	The Gain of the Rabbit Ears (V) Antenna using Different	56
	Angles and Lengths	
Table 4.6	Comparing of Different Software's using Same Parameters	57
	and Same Method	
Table 4.7	Various Parameters for Yagi-Uda Antenna	62
Table 4.8	Numerical Results Obtained of Yagi-Uda Antennas with $N =$	64
	5 and Different Spaces Between the Dipoles	
Table 4.9	The Obtained Gain and Input Impedance for Elements $N = 3$	65
Table 4.10	The Obtained Gain and Input Impedance for Elements $N = 3$	66
	and $N = 7$	
Table 4.11	Commonly Used Frequencies in RRTK TV	72
		-
Table 4.12	Gain, Input Impedance and Efficiency for $N = 5$ Elements	76
	Obtained for this Work.	